
INFORMATIQUE EMBARQUÉE ET OBJETS CONNECTÉS

DÉFINITION D'UN SYSTÈME EMBARQUÉ

- " (**Embedded** system » ou système incorporé/intégré/enfoui : tout système conçu pour résoudre un problème ou une tâche spécifique/dédiée <u>mais n'est pas un ordinateur d'usage général.</u>
- Système autonome ne possédant pas d'entrées-sorties standards.
- Parties matérielle et logicielle intimement liés et noyés dans le matériel et non discernables comme dans un environnement de travail classique de type ordinateur.
- Composante primordiale d'un système plus large ou une machine dont l'objectif est de commander, contrôler et superviser ce système.

CONSTITUTION D'UN SYSTÈME EMBARQUÉ

DU SYSTÈME EMBARQUÉ À L'OBJET CONNECTÉ

Du réfrigérateur intelligent ...

On ajoute des fonctionnalité à l'objet de base.

Le réfrigérateur intelligent :

- indique si la porte est entre-ouverte (bip)
- indique si le filtre d'eau doit être changé (bip)
- détecte les aliments qu'il possède,
- s'il manque certains aliments importants
- les recettes pouvant être faites
- qu'il y a trop d'aliment favorisant le cholestérol...

Il n'y a ni réseau, ni internet

... au réfrigérateur connecté

- Avertit le smartphone d'acheter des aliments
- Commande un filtre a eau
- Recherche les meilleurs prix
- Affiche sa consommation
- Commande les denrées fondamentales luimême
- Suggère certains travaux à faire au smartphone

Nécessite donc une connexion à l'internet.

COMMANDE ACTIONNEUR ET ACQUISITION CAPTEUR: ÉCRIRE DES PROGRAMMES

Contenus	Capacités attendues		
ombarqués	Identifier des algorithmes de contrôle des comportements physiques à travers les données des capteurs, l'IHM et les actions des actionneurs dans des systèmes courants.		
Interface homme-machine (IHM)	Réaliser une IHM simple d'un objet connecté.		
	Écrire des programmes simples d'acquisition de données ou de commande d'un actionneur.		

Exemples d'activités

- Identifier les évolutions apportées par les algorithmes au contrôle des freins et du moteur d'une automobile, ou à l'assistance au pédalage d'un vélo électrique.
- Réaliser une IHM pouvant piloter deux ou trois actionneurs et acquérir les données d'un ou deux capteurs.
- Gérer des entrées/sorties à travers les ports utilisés par le système.
- Utiliser un tableau de correspondance entre caractères envoyés ou reçus et commandes physiques (exemple : le moteur A est piloté à 50 % de sa vitesse maximale lorsque le robot reçoit la chaîne de caractères « A50 »).

COMMANDE ACTIONNEUR ET ACQUISITION CAPTEUR: ÉCRIRE DES PROGRAMMES

Cibles matérielles

- Cartes de la société micro:bit avec extensions « arduino Grove » ou pas
- Robots de la société Makeblock: mbot
- Cartes arduino

Mini ordinateur Raspberry Pi (très puissant mais plus lourd à appréhender)

COMMANDE ACTIONNEUR ET ACQUISITION CAPTEUR: ÉCRIRE DES PROGRAMMES

Outils logiciels

- Programmation par blocs: makecode pour micro:bit, mblock 5 si mbot ou arduino, ...
- Programmation en microPython
- Programmation en C pour arduino

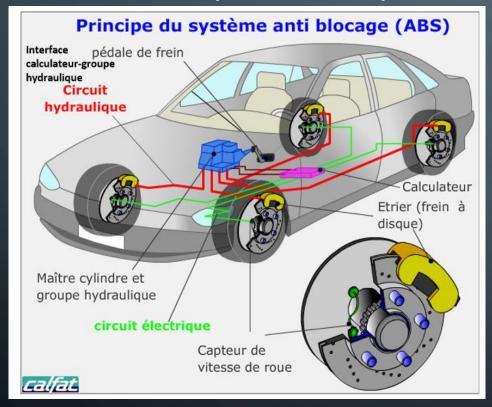
INTERFACE HOMME MACHINE (IHM): RÉALISER

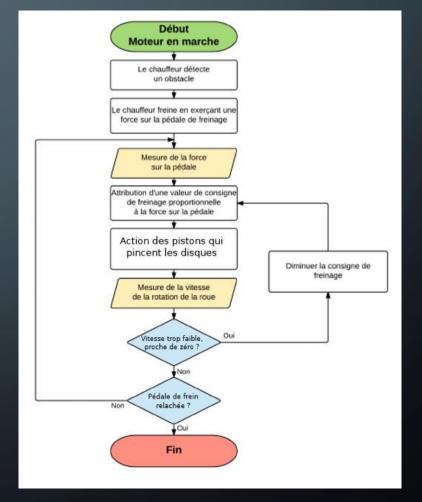
Contenus	Capacités attendues				
Systemes informatiques	Identifier des algorithmes de contrôle des comportements physiques à travers les données des capteurs, l'IHM et les actions des actionneurs dans des systèmes courants.				
Interface homme-machine (IHM)	Réaliser une IHM simple d'un objet connecté.				
	Écrire des programmes simples d'acquisition de données ou de commande d'un actionneur.				

Exemples d'activités

- Identifier les évolutions apportées par les algorithmes au contrôle des freins et du moteur d'une automobile, ou à l'assistance au pédalage d'un vélo électrique.
- Réaliser une IHM pouvant piloter deux ou trois actionneurs et acquérir les données d'un ou deux capteurs.
- Gérer des entrées/sorties à travers les ports utilisés par le système.
- Utiliser un tableau de correspondance entre caractères envoyés ou reçus et commandes physiques (exemple : le moteur A est piloté à 50 % de sa vitesse maximale lorsque le robot reçoit la chaîne de caractères « A50 »).

INTERFACE HOMME MACHINE (IHM): RÉALISER

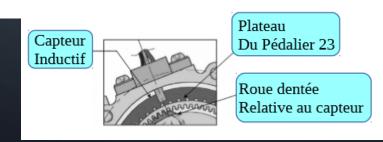

- Communication par radio, par bluetooth,...
- Emetteur : smartphone , carte micro:bit différente
- Logiciel: Appiventor sur PC/ smartphone, « bluetooth électronic »/
 smartphone, makecode/micro:bit


Contenus	Capacités attendues
embarqués	Identifier des algorithmes de contrôle des comportements physiques à travers les données des capteurs, l'IHM et les actions des actionneurs dans des systèmes courants.
Interface homme-machine (IHM)	Réaliser une IHM simple d'un objet connecté.
	Écrire des programmes simples d'acquisition de données ou de commande d'un actionneur.

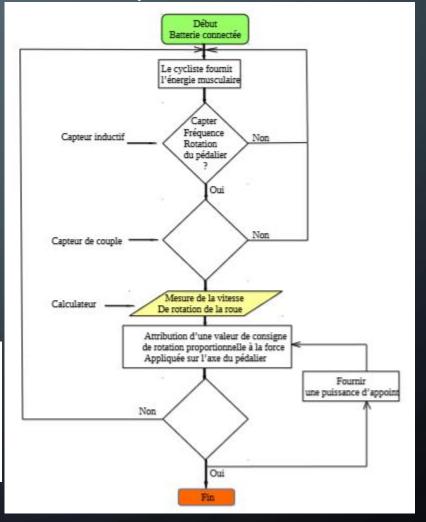
Exemples d'activités

- Identifier les évolutions apportées par les algorithmes au contrôle des freins et du moteur d'une automobile, ou à l'assistance au pédalage d'un vélo électrique.
- Réaliser une IHM pouvant piloter deux ou trois actionneurs et acquérir les données d'un ou deux capteurs.
- Gérer des entrées/sorties à travers les ports utilisés par le système.
- Utiliser un tableau de correspondance entre caractères envoyés ou reçus et commandes physiques (exemple : le moteur A est piloté à 50 % de sa vitesse maximale lorsque le robot reçoit la chaîne de caractères « A50 »).

 L'évolution des systèmes : Le dispositif de freinage sans blocage des roues : discussion, exposé ou analyse des algorigrammes de contrôle.

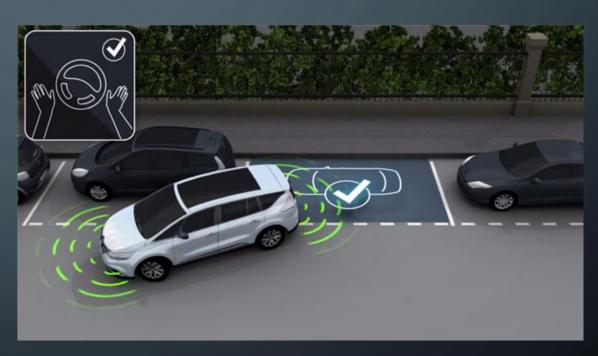

Utilité des capteurs, de l'algorithmes de contrôle

1. L'évolution des systèmes : Le vélo à assistance électrique



Calculateur

Plateau 23


Utilité des capteurs, de l'algorithmes de contrôle

1. L'évolution des systèmes : les voitures et pack assist.

Utilité des capteurs, de l'algorithmes de contrôle

LES ACTIVITÉS SNT TOULOUSE

Bernard mbot TP01	31/03/2019 16:40	Dossier de fichiers
Bernard mbot TP02	08/05/2019 22:36	Dossier de fichiers
Bernard mbot TP03	08/05/2019 22:36	Dossier de fichiers
Bernard mbot TP04	08/05/2019 22:36	Dossier de fichiers
bernard_assistants_vocaux	08/05/2019 23:36	Dossier de fichiers
Joris_Activité_Lampadaire_intelligent	08/05/2019 22:36	Dossier de fichiers
Juliette_UtilisationSmartphone_CreationA	11/05/2019 17:22	Dossier de fichiers
Pascal_Objets_connectes	01/04/2019 15:12	Dossier de fichiers
Patrick_Projet_PopUp	08/05/2019 21:39	Dossier de fichiers

ACTIVITÉ MAGISTERE

	△ Titre •	Académie 🔻	Contributeur(s) 🔻	Aboutissement •	Intérêt 💌	Remarques, propositions	Durée	Contraintes •
■ 6. Informatique embarquée et objets cc Count 24				▼ Filled 87.5%	▼ Hist _			
45	IHM sur PC avec Node-Red	Versailles	François Riotte					
46	Objet connecté : qu'est-ce que c'est ?	Lille	Stéphane Ramstein					
47	Objet connecté : réalisation et GPS	Lille	Stéphane Ramstein					
48	Acquisition et traitement embarqué de grande	Limoges	Dominique GLUCK	Clé en main	****			Matériel spécifique
49	Communiquer ? Oui mais comment ?	Lille	hervé owsinski	Clé en main	****		1 séance (1h30)	Matériel spécifique
50	controler le lasergame	Lille	hervé owsinski	Clé en main	****		Séquence complète (env	Matériel spécifique
51	Création d'objets embarquant de l'informatique.	Nantes	MEAL Stéphane	Clé en main	****	microbit	Séquence complète (env	Matériel spécifique
52	Embarqué, Ecosystème numérique, Plateforme	Versailles	François Riotte	Clé en main	****		1 séance (1h30)	Débranché
53	Hall of fame sur afficheur à LEDS	Aix-Mars	Alexandre Ghelli e	Clé en main	****	vu à paris, mais docs pas encore su	Séquence complète (env	Matériel spécifique
54	Lasergame, un jeu embarqué	Lille	hervé owsinski	Clé en main	****		Séquence complète (env	Matériel spécifique
55	Pilotage à distance de la rotation d'une camér	Créteil	Damien, Iceta	Clé en main	****	vu à paris, délicat à mettre en oeuv	Séquence complète (env	Matériel spécifique
56	Qu'est-ce qu'un objet connecté. Analyse de ca	Versailles	François Riotte	Clé en main	****	idem "embarqué, écosystème" ?	1 séance (1h30)	Débranché
57	Chifoumi numériaue	Versailles	Francois Riotte	Clé en main	***	Utiliser les capteurs de aravité d'un	1 séance (1h30)	Bvod

ACTIVITÉ MAGISTERE

	a	Titre	Académie 🔻	Contributeur(s) •	Aboutissement •	Intérêt •	Remarques, propositions	Durée •	Contraintes •
	1	Objet connecté : qu'est-ce que c'est ?	Lille	Stéphane Ramstein	Clé en main	***		1 séance (1h30)	Matériel spécifique
59		Objet connecté : réalisation et GPS	Lille	Stéphane Ramstein	Clé en main	***		1 séance (1h30)	Matériel spécifique
60		IHM et communication entre 2 smartphones	Versailles	François Riotte	Clé en main	*	hyper technique, ok pour geek	1 séance (1h30)	Salle info
61		Activité prise en main BBC microbit	Bordeaux	olivier éloi	A modifier/c	***	python		Matériel spécifique
62		Création d'applications pour Smartphone	Nantes	MEAL Stéphane	A modifier/c	***	app inventor	2 séances (3h)	Byod
63		Démarche d'analyse et de conception d'un obj	Grenoble	Boudjit Mokhtar	A modifier/c	***	Les deux premières séances de réfl		Matériel spécifique
64		Algorithmes de suivi et de contrôle de systèm	Montpell	Eric Faritiet	A modifier/c	**	arduino avec labdec, pour 18 élève	Séquence complète (env	Matériel spécifique
65		Objet connecté : le Raspberry Pi	Lille	Stéphane Ramstein	A modifier/c	**		Moins d'une séance	Matériel spécifique
66		Robot mobile connecté	Créteil	Ahmed Salamat	A modifier/c	**	technique très riche, mais pour des	1 séance (1h30)	Matériel spécifique
67		robot Thymio : IHM, communication et exposé	Montpell	Thierry Coubéris	A modifier/c	**	matériel très spécifique	3 séances (4h30)	Matériel spécifique
68		Outils pour le cours : un hotspot WiFi et serve	Grenoble	Fabrice Cizeron	Très incomplet	*	intro au raspberry pi		Matériel spécifique