3^e - Démonstration du Théorème de Pythagore

С

On considère un triangle ABC rectangle en C.

On note AC = a, BC = b et AB = c.

1. Placer sur la figure le point D sur [AB] tel que (CD) soit perpendiculaire à (AB).

On note
$$AD = d$$
, et $BD = e$

- 3. En déduire une égalité de trois quotients.
- 4. En déduire une égalité de quotients faisant intervenir les nombres a, c et d.
- 5. En déduire une expression de a² en fonction de c et d.
- 6. De la même façon, déterminer une expression de b² en fonction de c et e.
- 7. Prouver que $a^2 + b^2 = c^2$

Coups de pouces possibles (individuels, en cas de blocage)

- <u>En cas de méconnaissance du cours</u> : Fiche de rappel de définitions et propriétés sur les triangles semblables et les produits en croix, à connaître pour la prochaine fois.

- Question 1.

« Place un point D sur (AB). Est-ce que (CD) est perpendiculaire à (AB) ?»

- Question 2.

- « A quelle(s) condition(s) peut-on affirmer que deux triangles sont semblables ?»
- « Y a-t-il des angles égaux sur la figure ?» « Lesquels ? »

- Question 3.

- « Peux-tu trouver, dans ton cours ou dans la fiche de rappel, une propriété utile pour répondre à cette question ?»
 - « Peux-tu écrire les longueurs qui se correspondent dans les triangles semblables ADC et ABC ? »
 - « Que peux-tu dire de ces longueurs ?»

- Question 4.

« Peux-tu remplacer les longueurs par les lettres qui les représentent ?

- Question 5.

- « Quelle propriété peux-tu utiliser si tu sais que deux quotients sont égaux ? »
- « Connais-tu la propriété des produits en croix ? »

- Question 6.

« A quels triangles faut-il s'intéresser pour répondre à cette question ?

- Question 7.

- « Peux-tu transformer l'expression a² + b² en utilisant des propriétés de calcul ? »
- « Peux-tu exprimer c en fonction de d et e?

A connaître

Définition

Deux triangles sont semblables lorsque leurs angles ont deux à deux la même mesure.

Propriété (S1)

Si deux triangles ont deux à deux deux angles de même mesure alors ils sont semblables.

Propriété (S2)

Si deux triangles sont semblables alors les longueurs des côtés opposés aux angles égaux sont proportionnelles.

Propriété (S2')

Si deux triangles ont leurs côtés de longueurs proportionnelles alors ils sont semblables.

Propriété (PC) Si
$$\frac{a}{b} = \frac{c}{d}$$
 alors ad = bc

A connaître

Définition

Deux triangles sont semblables lorsque leurs angles ont deux à deux la même mesure.

Propriété (S1)

Si deux triangles ont deux à deux deux angles de même mesure alors ils sont semblables.

Propriété (S2)

Si deux triangles sont semblables alors les longueurs des côtés opposés aux angles égaux sont proportionnelles.

Propriété (S2')

Si deux triangles ont leurs côtés de longueurs proportionnelles alors ils sont semblables.

Propriété (PC) Si
$$\frac{a}{b} = \frac{c}{d}$$
 alors ad = bc

A connaître

Définition

Deux triangles sont semblables lorsque leurs angles ont deux à deux la même mesure.

Propriété (S1)

Si deux triangles ont deux à deux deux angles de même mesure alors ils sont semblables.

Propriété (S2)

Si deux triangles sont semblables alors les longueurs des côtés opposés aux angles égaux sont proportionnelles.

Propriété (S2')

Si deux triangles ont leurs côtés de longueurs proportionnelles alors ils sont semblables.

Propriété (PC) Si
$$\frac{a}{b} = \frac{c}{d}$$
 alors ad = bc